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Introduction: Bibliometrics of ‘electricity price forecasting’
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Introduction: Bibliometrics of ‘electricity price forecasting’

EPF journal articles and citations to those articles
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Introduction: Bibliometrics of ‘electricity price forecasting’

Ten most popular journals
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Introduction: What and how are we forecasting?

The electricity ‘spot’ price
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Forecasting horizons

@ Short-term

e From a few minutes up to a few days ahead
e Of prime importance in day-to-day market operations

@ Medium-term

e From a few days to a few months ahead
o Balance sheet calculations, risk management, derivatives pricing
o Inflow of ‘finance solutions’
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Introduction: What a

w are we forecast

A taxonomy of modeling approaches
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A look into the future of EPF

@ Fundamental price drivers and input variables
e Modeling and forecasting the trend-seasonal components
e The reserve margin and spike forecasting

© Beyond point forecasts — probabilistic forecasts

© Combining forecasts

o Point forecasts
o Probabilistic forecasts

@ Multivariate factor models
© The need for an EPF-Competition

e A universal test ground
e Guidelines for evaluating forecasts
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Modeling the trend-seasonal components

@ Standard approach — decompose a time series of prices P; into
o the long-term trend-seasonal component (LTSC) Ty,
o the short-term seasonal component (STSC) s,
e and the remaining variability, error or stochastic component X;
@ The hourly/weekly STSC is usually captured by autoregression
& dummies — forecasting is straightforward
@ Annual seasonality is present in spot prices, but in most cases
the LTSC is dominated by a more irregular cyclic component

e Due to fuel prices, economic growth, long-term weather trends
o See e.g. Janczura et al. (2013), Nowotarski et al. (2013b)
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Modeling the LTSC
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Adequate seasonal decomposition is important !

Wavelet-based: a=9.60, 3=0.48, (0/3=20.00), 0=6.17, u=71.98, y=0.13, A=0.01
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1. Fundamental price drivers and input variables

The reserve margin and spike forecasting

@ Reserve margin, also called surplus generation, relates the
available capacity (generation, supply), C;, and the demand
(load), Dy, at a given moment in time t

e The traditional engineering notion: RM = C; — D,
e Some authors prefer to work with dimensionless ratios: p: = %
or the so-called capacity utilization CU =1 — %t

e Consider p(ty, tp) = gggg

calculated at time t; (e.g. today) for an upcoming period t,

D(ty, tp) is the National Demand Forecast (Indicated Demand)

C(ty, tp) is the predicted Generation Capacity (Indicated

Generation, see www.bmreports.com)

See Cartea et al. (2009), Maryniak and Weron (2014)
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p(t1, tp) for 2003-05 (top) and 2006-12 (bottom)

20 0.08
I =20 —~ I 2D
s | EE = | & %% EEew
0
& 1o L__Jr=2w | & ooal| CJr=2w
o a
7] 2
£ 5 l] {2 002 mﬂ
. . alllh.L . | d
0.7 0.8 0.9 1 0.7 0.8 0.9 1
p(t-=1.0) p(t-1,1)
— 0.6([ I =20 1 0.4 [ I RSC
[oN
e o =1w 2 o3} EEEIRFP
@ 041 T Jr=2w 2 C_JcF
< 2 02
- 2
@ 02 1 T o1 IHH
§ i | I
0 oo =m alll 0 o il
0.7 0.8 0.9 1 0.7 0.8 0.9 1
p(t-1,1) p(t-2D,t)

Anderson and Davison (2008): p = 85% is the ‘industrial standard’ warranting a safe functioning of the power system
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Probabilistic forecasts

@ Interval forecasts (only 10 articles)

o Zhang et al. (2003), Zhang and Luh (2005), Misiorek et al.
(2006), Weron and Misiorek (2008), Zhao et al. (2008),
Serinaldi (2011), Gonzalez et al. (2012), Wu et al. (2013),
Khosravi et al. (2013a,b)

e In only one paper formal statistical tests for coverage are
conducted — conditional coverage of Christoffersen (1998)

@ Density forecasts (only 2/3 articles)

o Serinaldi (2011) forecasts the distribution of electricity prices,
but computes and discusses only the Pl

e Huurman et al. (2012) perform density forecasting of Nord Pool
spot prices and use the test of Berkowitz (2001)

e Jonsson et al. (2014) generate prediction densities of day-ahead
electricity prices in Western Denmark, but do not test them
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3. Combining forecasts

Forecast combinations, forecast/model averaging

@ The idea goes back to the 1960s

e Electricity demand or transmission congestion forecasting
(Bunn, 1985a; Bunn and Farmer, 1985; Lgland et al., 2012;
Smith, 1989; Taylor, 2010; Taylor and Majithia, 2000)

o Only recently for EPF: Bordignon et al. (2013), Nowotarski et
al. (2013a), Nowotarski and Weron (2014) and Raviv et al.
(2013)

@ In the ‘Al world": committee machines or ensemble averaging
o Guo and Luh (2004) combine a RBF network (23 inputs and six
clusters) and a MLP (55 inputs and eight hidden neurons) to
compute daily average on-peak electricity price for New England
o Forecast combinations and committee machines seem to evolve

independently, with researchers from both groups not being
aware of the parallel developments !
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To combine or not to combine?
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To combine or not to combine?

Summary statistics for 6 individual and 3 averaging methods: WMAE is the mean value of
WMAE for a given model (with standard deviation in parentheses), # best is the number of
weeks a given averaging method performs best in terms of WMAE, and finally m.d.f.b. is the
mean deviation from the best model in each week. The out-of-sample test period covers 30
weeks (5.6.2013-31.12.2013).

Individual models Forecast combinations

AR TAR SNAR MRJD NAR FM Simple CLS LAD

WMAE 5.03 5.07 4.77 4.98 488 5.36 447 429 492
(3.40)  (3.53) (3.26) (3.17)  (1.62)  (3.17) (2.87)  (1.88)  (2.41)

# best 1 3 4 1 2 4 8 6 1

m.d.f.b. 1.01 1.05 0.75 0.96 0.86 1.34 0.45 0.27 0.89
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Combining interval /density EPF — only one paper

@ Nowotarski and Weron (2014) propose a new method for
constructing Pl, which utilizes the concept of quantile regression
(QR) and a pool of point forecasts of individual models

e Empirical Pl from combined forecasts do not yield gains
o QR-based Pl are more accurate than those of the benchmark
(AR) and the best individual model (SNAR)
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Factor models

@ All hourly prices Py, k =1, ...,24, co-move and depend on a
small set of common factors F; = [Fys, ..., Fn:)

@ The individual series Py; can be modeled as a linear function of
N principal components F; and stochastic residuals v/y:

Pt = NFy + v, (1)

where the loads (or loadings) Ny = [Ak1, ..., Akn] describe the
relation between the factors F; and the panel variables P,;
o See e.g. Bai (2003), Stock and Watson (2002)
o It is natural to assume that the common factors follow a
VAR(p) model, see e.g. Maciejowska and Weron (2014)
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Forecasting PJM Dominion Hub daily spot prices

Using the information contained in hourly prices
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Factor models and EPF

@ Applications of multivariate models to EPF are very recent
o Chen et al. (2008), Hardle and Triick (2010)
@ In the last two years, an increased inflow of ‘multivariate EPF
papers’ can be observed
o Garcia-Martos et al. (2012), Pefia (2012), Vilar et al. (2012),
Elattar (2013), Miranian et al. (2013), Wu et al. (2013)
@ The idea originating in macroeconometrics of using
disaggregated data for forecasting of aggregated variables
o Liebl (2013), Maciejowska and Weron (2013, 2014),
Raviv et al. (2013)
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The need for an EPF-Competition

@ Many of the published results seem to contradict each other
e Misiorek et al. (2006) report a very poor forecasting
performance of a MRS model, while Kosater and Mosler (2006)
reach opposite conclusions for a similar MRS model but a
different market and mid-term forecasting horizons
o On the other hand, Heydari and Siddiqui (2010) find that a
regime-switching model does not capture price behavior
correctly in the mid-term
o Cross-category comparisons are even less conclusive and more
biased
e Typically advanced statistical techniques are compared with
simple Al methods, see e.g. Conejo et al. (2005a), and vice
versa, see e.g. Amjady (2006)
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A universal test ground

@ This calls for a comprehensive and thorough study involving

@ the same datasets

@ the same robust error evaluation procedures

© statistical testing of the significance of the outperformance of
one model by another

@ Like the Makridakis or M-Competitions for economic forecasting

@ Global Energy Forecasting Competition 2014 includes a ‘price
forecasting’ track this year, see www.drhongtao.com/gefcom
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Guidelines for evaluating forecasts

@ A selection of the better performing measures
o weighted-MAE, like the weekly-weighted WMAE
o seasonal MASE (Mean Absolute Scaled Error)
o RMSSE (Root Mean Square Scaled Error)
should be used exclusively or in conjunction with the more
popular ones (MAPE, RMSE)
e Statistical testing for the significance of the difference in
forecasting accuracy of the models
o The Diebold and Mariano (1995) test; for uses and abuses see
Diebold (2013)
o The model confidence set approach of Hansen et al. (2011)
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